
Chapter 1 �A  Review of Some 

Elementary Statistical 

Concepts

Chapter Objectives
This chapter reviews elementary statistical concepts that are important for understand-
ing intermediate methods, such as linear regression.

In chapter 1, we will

•	 Briefly discuss descriptive statistics, such as measures of central tendency and 
dispersion.

•	 Link the normal distribution and statistical methods.
•	 Discuss important concepts for linear regression, such as statistical inference, 

the use of samples, and variable standardization.
•	 Reconsider inferential methods, such as the t test.
•	 Run some basic statistical analyses in SPSS and Stata.

Elementary statistics can be confusing, especially to people who are uncomfortable 
with numbers. Many of us were first introduced to statistics in a pre-algebra or algebra 
course. However, your initial introduction probably occurred in elementary school. 
Do you remember the first time you heard the word mean used to indicate the average 
of a set of numbers? This likely took place in some math class very early on in your 
education. How about graphing exercises? Do you recall being given two sets of points 
and being asked to plot them on graph paper? You were introduced to the x-axis and 
the y-axis, or the coordinate axes.

Around the same time, or perhaps a little later, you became familiar with elemen-
tary probability. This likely took the form of a question such as, “What is the probabil-
ity of a die being thrown and landing on a five?” You first learned that you needed to 
count the number of possible outcomes (there are six faces on a typical die, so there 
are six possible outcomes). This was the denominator. Then you counted the particular 
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outcome. This was the numerator. Putting these two counts together, you learned that 
the probability of the roll coming up as five is 1/6, or approximately 0.167. This latter 
value is known as a proportion. Proportions—and probabilities—must fall between 
zero and one. They can easily be transformed into percentages by moving the decimal 
place over two spaces to the right (or multiplying by 100) and placing a percentage sign 
next to the number. What does this mean, though? Well, one way to consider it is to say 
that we expect a five to come up about 16.7 percent of the time when we roll a typical 
die numerous times. Of course, you can probably confirm this by rolling the die many, 
many times. Some statisticians refer to such a view as a frequentist interpretation of or 
approach to statistics.

Probabilities are normally presented using, not surprisingly, the letter P. One way 
to represent the probability of a five from a roll of a die is with P(5). So we may write 
P(5) = 0.167 or P(5) = 1/6. You might recall that some statistical tests, such as t tests 
(see the description later in the chapter) or analyses of variance (ANOVAs), are often 
accompanied by p values. As we shall learn, p values are a type of probability value used 
in many statistical tests.

By combining the principles of probability and elementary statistical concepts, we 
may develop the basic foundations for statistical analysis. In general, there are two types 
of statistical analyses: descriptive and inferential. The former set of methods normally is 
used to describe or summarize one or more variables (recall that the term variables is 
used to indicate phenomena that can take on more than one value; this contrasts with 
constants, or phenomena that take on only one value). Some common terms that you 
are probably familiar with are measures of central tendency and measures of dispersion. 
We will see several of these measures a little later. Then there are the many graphical 
techniques that may be used to “see” the variable. You might recognize techniques such 
as histograms, stem-and-leaf plots, dot plots, and box-and-whisker plots.

Inferential statistics are designed to infer or deduce something about a population 
from a sample. Suppose, for instance, that we are interested in determining who is likely 
to win the next presidential election in the United States. We will assume there are 
only two candidates from which to choose: Clinton and Rice. Of course, it would be 
enormously expensive to ask each person who is likely to vote in the next election his 
or her choice of president. Therefore, we may take a sample of likely voters and ask 
them for whom they plan to vote. Can we infer anything about the population of voters 
on the basis of our sample? The answer is that it depends on a number of factors. Did 
we collect a good sample? Were the people who responded honest? Do people change 
their minds as the election approaches? We do not have time to get into the many issues 
involved in sampling and survey responses, so we will have to assume that our sample 
is a good representation of the population from which it is drawn and that people are 
generally honest in their responses to our inquiries. Most important for our purposes 
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is this: Inferential statistics include a set of techniques designed to help us answer ques-
tions about a population from a sample.

Another way of dividing up statistics is to compare techniques that deal with one 
variable from those that deal with two or more variables. Most readers of this presen-
tation will likely be familiar with techniques designed for one variable. These include, 
as we shall see later, most of the descriptive statistical methods. The bulk of this pre-
sentation, at least in later chapters, concerns a technique designed for analyzing two 
or more variables simultaneously. A key question that motivates us is whether two or 
more variables are associated in some way. As the values of one variable increase, do the 
values of the other variable also tend to increase? Or do they decrease? In elementary 
statistics, students are introduced to covariances and correlations, two techniques de-
signed to answer these questions generally. However, recall that you are not necessarily 
saying that one variable somehow changes another variable. Remember the maxim, 
correlation does not equal causation? We will try to avoid the term causation in this pre-
sentation because it involves many thorny philosophical issues (see Pearl, 2000). None-
theless, one of our main concerns is whether one or more variables are associated with 
another variable in a systematic way. Determining the characteristics of this association 
is one of the main goals of the linear regression model that we shall learn about later.

Measures of Central Tendency and Dispersion
Means
Now that we have some background information on elementary statistics, let’s learn 
more about the most important measures, including how they are used and how they 
are computed. We will begin with measures of central tendency. Suppose we have col-
lected data on a variable such as weight in kilograms. Our intrepid researchers have 
carefully placed each person in the sample on a scale and recorded their body weights. 
To simplify things, we will assume the researchers rounded the weights to the nearest 
kilogram. What would be your best guess of the average weight among the sample? It 
is not always the best, but the most frequent measure is the arithmetic mean, which is 
computed using the following formula:

∑= =E X x x n[ ] /i

The term on the left-hand side of the equation is E[X]. This is a shorthand way 
of saying that this is the expected value of the variable X. It is often used to represent 
the mean. To be more precise, we might also list this term as E [weight in kg], but 
usually, as long as it is clear that X = weight in kilograms, using E[X] is sufficient. The 
middle term—read as x-bar—may also be familiar as a common symbol for the mean. 
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The formula for computing the mean is rather simple. We add all the values of the 
variable and divide this sum by the number of observations. Note that the rather cum-
bersome symbol that looks like an overgrown E in the right-hand part of the equation 
is the summation sign; it tells us to add whatever is next to it. The symbol xi denotes 
the specific values of the x variable, or the individual weights we have measured. The 
subscript i indicates each observation. The symbol n represents the sample size. Some-
times the individual observations are represented as i . . . n. If you know that n = 5, then 
you know there are five individual observations in your sample. In statistics, we often 
use uppercase roman letters to represent population values and lowercase roman letters 
to represent sample values. Therefore, when we say =E X x[ ] ,  we are implying that our 
sample mean estimates the population expected value, or the population mean. 

Here is a simple example: We have a sample of  people’s weights (in kilograms) that 
consist of the following set: [84, 75, 80, 69, 90]. The sum of this set is [84 + 75 + 80 + 
69 + 90] = 398; therefore, the mean is 398/5 = 79.6. Another way of thinking about 
this mean value is that it represents the center of gravity. Suppose we have a plank of 
wood that is magically weightless (or of uniform weight across its span). We order 
the people from lightest to heaviest—trying to space them out proportionally to their 
weights—and ask them to sit on our plank of wood. The mean is the point of balance, 
or the place at which we would place a fulcrum underneath to balance the people on the 
plank (as illustrated in Figure 1.1).

There are some additional things you should know about the mean. First, it is mea-
sured in the same units as the observations. If your observations are not all measured in 
the same unit (for example, some people’s weights are in kilograms, others in pounds), 
then the mean cannot be interpreted. Second, the mean provides a good measure of cen-
tral tendency if the variable is measured continuously and is normally distributed. What 
do these terms mean? A variable is measured continuously—or we say the variable is 
continuous—if it can conceivably take on any real number. Of course, we usually cannot 
be so precise when we measure things, so it is not uncommon to round our measures to 
whole numbers or integers. We also often measure things using positive numbers only; 
it makes little sense, for instance, to try to measure a person’s weight using negative 
numbers. The other type of variable is known as discrete or categorical; these variables 

Figure 1.1:  What Is a Mean?
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have a finite number of possible values. For example, we normally use only two catego-
ries to measure gender: female and male. Hence, this is a discrete variable.

Normally Distributed Data
We say a variable is normally distributed if it follows a bell-shaped curve. Order the 
values of the variable from lowest to highest and then plot them by their frequencies or 
the percentage of observations that have a particular value (we must assume that there 
are many values of our variable). We may then view the “shape” of the distribution of 
the variable. Figure 1.2 shows an example of a bell-shaped distribution, usually termed 
a normal or Gaussian distribution, using a simulated sample of weights. (It is known as 
Gaussian after the famous German mathematician Carl Friedrich Gauss, who purport-
edly discovered it.) 

We will return to means and the normal distribution frequently here and through-
out the book. To give you a hint of what is to come, the linear regression model is de-
signed, in part, to predict means for particular sets of observations in the sample. For 
instance, if we have information on the heights of our sample members, we may wish to 
use this information to predict their weights. Our predictions could include predicting 
the mean weight of people who are 72 cm tall. We may use a linear regression model 
to do this.

However, suppose that our variable does not follow a normal distribution. May we 
still use the mean to represent the average value? The simple answer is yes, as long as the 
distribution does not deviate too far from the normal distribution. In many situations in 
the social and behavioral sciences, though, variables do not have normal distributions. 
A good example of this involves annual income. When we ask a sample of people about 
their annual incomes, we usually find that a few people earn a lot more than others. 
Measures of income typically provide skewed distributions, with long right tails. If 
asked to find a good measure of central tendency for income, there are several solutions 

Figure 1.2:  The Normal Distribution
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available. First, we may take the natural (Naperian) logarithm of the variable. You might 
recall from an earlier mathematics course that using the natural logarithm (or, as an 
alternative, the base 10 logarithm) pulls in extreme values. If this is not clear, try taking 
your calculator and using the LN function with some large and small values (for exam-
ple, 10 and 1,500). You will easily see the effect this has on the values of a variable. If 
you are lucky, you may find that taking the natural logarithm of a variable with a long 
right tail transforms it into a normal distribution. The square root or cube root of a 
variable may also work to “normalize” a skewed distribution. We will see examples of 
this in chapter 10.

Medians
Second, there are several direct measures of central tendency appropriate for skewed 
distributions (or other distributions plagued by extreme values such as outliers; see 
chapter 12), such as the trimmed mean and the median. The trimmed mean cuts off 
some percentage of values from the upper and lower ends of the distribution, usually 
5 percent, and uses the remaining values to compute the mean value. The median should 
be familiar to you. It is the middle value of the distribution. To find it, we first order the 
values of the variable from lowest to highest. Then we choose either the middle value if 
there is an odd number of observations or the average of the middle two values if there 
is an even number of observations. If you are familiar with percentiles (or quartiles or 
deciles), then you might recall that the median is the 50th percentile of a distribution. 
The median is known as a robust statistic because it is relatively unaffected by extreme 
values. As an example, suppose we have two variables, one that follows a normal distri-
bution (or something close to it) and another that has an extreme value:

Variable 1: [45, 50, 55, 60, 65, 70, 75]
  Variable 2: [46, 51, 54, 59, 66, 71, 375]

Variable 1 has a mean of 60 and a median of 60, so we make the same estimate of its 
central value regardless of which measure is used (the mean and median being equal). 
In contrast, Variable 2 has a mean of 103 but a median of 59. Although we might debate 
the point, we think most people would agree that the median is a better representative 
of the average value than the mean for Variable 2.

Standard Deviations
The next issue to address from elementary statistics involves measures of dispersion. As 
the name implies, these measures consider the spread of the distribution of a variable. 
Most readers are familiar with the term standard deviation, as it is the most common 
measure for continuous variables. However, before seeing the formula for the standard 
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deviation, it is useful to consider some other measures of dispersion. The most basic 
measure is the sum of squares, or SS[X]:

= ∑ −X x xSS[ ] ( )1
2

This formula first computes deviations from the mean −x x( ),i  squares each one, and 
adds them up. If you have learned about ANOVA models, the sum of squares should be 
familiar. Perhaps you even recall that there are various forms of the sum of squares. We 
will learn more about these in chapter 4.

A second measure of dispersion that may be more familiar to you is the variance, or 
Var[X]. It is often labeled as s2. The formula is:

= =
∑ −

−
s

x x
n

Var[X]
( )

1
i2

2

Notice that another way of computing the variance is to take the sum of squares and 
divide it by the sample size minus one. One of the drawbacks of the variance is that it 
is measured not in units of the variable but rather in squared units of the variable. To 
transform it into the same units as the variable, it is, therefore, a simple matter to take 
the square root of the variance. This measure is the standard deviation (which is why 
the standard deviation is noted by the letter s, while the variance is labeled as s2):

= =
∑ −

−SD s
x x
n

[X]
( )i

2

1

A variable’s distribution, assuming it is normal, is often represented by its mean and 
standard deviation. In shorthand form, this is listed as x N x s( , )  (the wavy line 
means “distributed as”). Obviously, a variable that is measured in the same units as an-
other and that shares the same mean is less dispersed if its standard deviation is smaller. 
Although not often used, another promising measure of dispersion is the coefficient of 
variation (CV), which is computed by dividing the standard deviation by the mean of 
the variable s x( / ).  It is often multiplied by 100. The CV is valuable because it shows 
how much a variable varies about its mean.

An important point to remember is that symbols such as s and s2 are used to repre-
sent sample statistics. Greek symbols—or, as we have seen up until this point, upper-
case roman letters—are often used to represent population statistics. For example, the 
symbol for the population mean is the Greek letter mu (μ), whereas the symbol for the 
population standard deviation is the Greek letter sigma (σ). However, we will see when 
we get into the symbology of linear regression that Greek letters are used to represent 
other quantities as well.
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Standard Error
Another useful measure of dispersion or variability refers not to the variable directly 
but rather to its mean. When we compute the variance or the standard deviation, we 
are concerned with the spread of the distribution of the variable. Typically, we have 
only one sample from a population—but many, many samples are possible. Let’s imag-
ine that we did take many, many samples from a population and compute a mean for 
each sample. We would end up with a sample of means from the population rather 
than simply a sample of observations. We could then compute a mean of these means, 
or an overall mean, which should pretty accurately reflect—assuming we do a good 
job of drawing the samples—the actual mean of the population of observations. 
Nonetheless, these numerous means will also have a distribution. It is possible to plot 
these means to see whether they follow a normal distribution. In fact, an important 
theorem from mathematical statistics states that the sample means follow a normal 
distribution even if they come from a nonnormally distributed variable in the pop-
ulation (see chapter 3). This is a very valuable finding because it allows us to make 
important claims about the linear regression model. We will learn about these claims 
in later chapters.

Our concern here is not whether the distribution of sample means is normally dis-
tributed, at least not directly. Rather, we need to consider a measure of the dispersion 
of these means. Statistical theory suggests that a good measure (estimate) of dispersion 
is the standard error of the mean. Why should we use the standard error? Consider 
the following example. In 2012, it was estimated that 42.2 million Americans, or about 
15 percent of the U.S. population, used food stamps. Imagine that we wanted to know 
how children and adults using food stamps were similar or different from one another 
in terms of physical health. It is simply not practical to get information from every fam-
ily using food stamps. Instead, we need to sample from this group. If we took a sample 
of 10,000 people from the population of 42.2 million, there would be literally trillions 
of possible combinations of respondents in our data. Each possible sample would be a 
little different from the next one. The standard error tells us how much difference we 
can expect between our sample and the true population mean. Think of it as a way to 
account for not having the full population of food stamp recipients. 

The standard error is computed using the sample standard deviation as:

=SE s
n

(mean)

Standard errors are very important in linear regression analysis. Later, we will discuss 
another type of standard error—known as the standard error of the slope coefficient—
which we use to make inferences about the regression model.
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Standardizing a Variable
One of the difficult issues when we are presented with different continuous variables is 
that they are rarely measured in the same units. Education is measured in years, income 
is measured in dollars, body weight is measured in pounds or kilograms, and food 
intake is measured in kilocalories. It is convenient to have a way to adjust variables so 
their measurement units are similar. You might recall that this is one of the purposes 
of z scores. Assuming that we have a normally distributed set of variables, we may 
transform them into z scores so they are comparable. A z-score transformation uses the 
following formula:

=
−

z
x x

s
score

( )i

Each observation of a variable is put through this formula to yield z scores, or what 
are commonly known as standardized values. The unit of measurement for z scores is 
standard deviations. The mean of a set of z scores is zero, whereas its standard deviation 
is one.

You may remember that z scores are used to determine what percentage of a dis-
tribution falls a certain distance from the mean. For example, 95 percent of the obser-
vations from a normal distribution fall within 1.96 standard deviations of the mean. 
This translates into 95 percent of the observations using standardized values falling 
within 1.96 z scores of the mean. With a slight modification, this phenomenon is help-
ful when we wish to make inferences from the results of the linear regression model 
to the population. The plot of z scores from a normally distributed variable is known 
as the standard normal distribution. As mentioned earlier, one of the principal advan-
tages of computing z scores is that they provide a tool for comparing variables that are 
measured in different units; this will come in handy as we learn about linear regression 
models. Of course, we must be intuitively familiar with standard deviations to be able 
to make these comparisons.

Covariance and Correlation
Our next task involves moving from a single variable to two variables. An important 
use of statistics is to consider the association or relationship between two variables. As 
mentioned earlier, an interesting question we might ask is whether two variables shift 
or change together. To give an obvious and not-very-interesting example, is it fair to say 
that height and weight shift together? Are taller people, on average, heavier than shorter 
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people? The answer, again on average, is most certainly yes. In statistical language, we 
say that height and weight covary or are correlated. The two measures most commonly 
used to assess the association between two continuous variables are, not surprisingly, 
the covariance and the correlation. To be precise, the correlation used most often is the 
Pearson’s product-moment correlation (there are actually many types of correlations; 
the type attributed to the statistician Karl Pearson is the most common).

A covariance is a measure of the joint variation of two continuous variables. In less 
technical terms, we claim that two variables covary when there is a high probability that 
large values of one are accompanied by large or small values of the other. For instance, 
height and weight covary because large values of one tend to accompany large values of 
the other in a population or in most samples. This is not a perfect association because 
there is clearly substantial variation in heights and weights among people. The equation 
for the covariance is:

=
∑ − −

−
x y

x x y y
n

Cov ( , )
( )( )

1
i i

The equation computes deviations from the means of both variables, multiplies them, 
adds up these products for each observation, and then divides this sum by the sample 
size minus one. Don’t forget that this implies that the xs and ys come from the same 
unit, whether it is a person, place, or thing.

One of the problems with the covariance is that it depends on the measurement 
scheme of both variables. It would be helpful to have a measure of association that did 
not depend on these measurement units but rather offered a way to compare various 
associations of different sets of variables. The correlation coefficient accomplishes this 
task. Among the several formulas we might use to compute the correlation, the follow-
ing equations are perhaps the most intuitive:

=
×

=
∑

−

x y
x y

x y

x y
z z
n

Corr( , )
Cov( , )

Var[ ] Var[ ]

Corr( , )
( )( )

1
x y

The first equation shows that the correlation is simply the covariance divided by a joint 
measure of variability: the variances of each variable multiplied, with the square root 
of this quantity representing what we might call the joint or pooled standard deviation. 
The second equation shows the relationship between z scores and correlations. We 
might even say, without violating too many tenets of the statistical community, that the 
correlation is a standardized measure of association.
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A couple of interesting properties of correlations are, first, that they always fall be-
tween −1 and +1, with positive numbers indicating a positive association and negative 
numbers indicating a negative association (as one variable increases, the other tends to 
decrease). A correlation of zero means there is no statistical association, at least not one 
that can be measured assuming a straight line association, between the two variables. 
Second, the correlation is unchanged if we add a constant to the values of the variables 
or if we multiple the values by some constant number. However, these constants must 
have the same sign, negative or positive.

As mentioned earlier, there are several other types of correlations (or what we 
refer to generally as measures of association) in addition to Pearson’s. For instance, a 
Spearman’s correlation is based on the ranks of the values of variables rather than the 
actual values. Similar to the median when compared to the mean, it is less sensitive to 
extreme values. There are also various measures of association designed for categorical 
variables, such as gamma, Cramer’s V, lambda, eta, and odds ratios. Odds ratios, in par-
ticular, are popular for estimating the association between two binary (two-category) 
variables. Odds ratios are discussed in much greater detail in chapter 13.

Comparing Means from Two Samples
Another important topic that we will discuss before moving into linear regression anal-
ysis involves comparing means from two distributions. Of course, we may compare 
many statistics from distributions, including standard deviations, correlations, and 
standard errors, but an important issue in applied statistics is determining whether the 
mean from one sample (or subsample) is different from the mean of another sample 
(or subsample). For example, I may wish to know whether the mean income of adults 
from Salt Lake City, UT, is higher than the mean income of adults from Seattle, WA. If 
I have good samples of adults from these two cities. I can consider a couple of things. 
First, I can take the difference between the means. Let’s say that the average annual in-
come among a Salt Lake City sample is $35,000 and the average annual income among 
a Seattle sample is $32,500. It appears as though the average income in Salt Lake City is 
higher. However, we must consider something else: We have two samples, so we must 
consider the possibility of sampling error. Namely, our samples likely have different 
means than the true population means, so we should take this into account. A t test is 
designed to consider these issues by, first, taking the difference between the two means 
and, second, by considering the sampling error with what is known as the pooled stan-
dard deviation. This provides an estimate of the overall variability in the means. 

The name t test is used because the t value that results from the test follows what 
is termed a Student’s t distribution. This distribution looks a lot like the normal distri-
bution; in fact, it is almost indistinguishable when the sample size is greater than 50. 
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At smaller sample sizes, the t distribution has fatter tails and is a bit flatter in the middle 
than the normal distribution.

As mentioned earlier, the t test has two components: the difference between the 
means and an estimate of the pooled standard deviation. The following equation shows 
the form the t test takes:

where			        

=
−

× +

= − + −
+ −

t
x y

s
n n

s n s n s
n n

1 1
,

( 1) ( 1)
( ) 2

p

p

1 2

1 1
2

2 2
2

1 2

The sp in the above equations is the pooled standard deviation. The ns are the sample 
sizes and the s2 represents the variances for the two groups. A key assumption that this 
type of t test makes is that the variances are equal for the two groups represented by the 
means. Using our example of incomes in Salt Lake City and Seattle above, let’s calculate 
the t test. Table 1.1 gives the basic descriptive statistics for each town so that we may 
calculate this statistic.

Initially, we can plug in the mean values into the t test and sample sizes for each city, 
as seen here:

= −

× +
t

s

35,000 32,500
1

50
1

50p

Of course, we need to calculate the pooled standard deviation (sp). We need to use the 
sample size (n) and standard deviation (s2) for each town to calculate it.

= − + −
+ −

s (50 1)500 (50 1)750
(50 50) 2p

2 2

Table 1.1:  Descriptive Statistics from Salt Lake City and Seattle

Statistic Salt Lake City Seattle

M $35,000 $32,500 

SD $500 $750 

n 50 50
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No doubt, this looks like a daunting calculation, but if we take it a piece at a time, it can 
be easily solved. 

= +

= +

=

s

s

s

(49)500 (49)750
98

12250000 27562500
98

6186.87

p

p

p

2 2

We can now solve the full equation:

= −
×

= =t 35,000 32,500
6186.87 .002

2,500
247.47

10.1

A t value of 10.1 indicates that there is a strong statistically significant difference be-
tween the two (we will discuss this later in the chapter) because it is larger than the 
critical t of 1.96. As a result, we can say that the average income in Salt Lake City is 
indeed higher than in Seattle. Without doing this test, we would not have known that.

Sometimes, we find that the assumption of equal variances is not true; the vari-
ances differ to a large degree between two samples. When this occurs, the following test, 
which is known as Welch’s t test, is used:

′ =
−

+
t

x y
x

n
y

n
Var[ ] Var[ ]

1 2

Unfortunately, we must use special tables if we wish to compute this value by hand and 
determine the probability that there is a difference between the two means. Fortunately, 
though, many statistical software packages provide both types of mean comparison 
tests, along with another test that is designed to show whether we should use the stan-
dard t test or Welch’s t test.

An important assumption that we are forced to make if we wish to use these mean- 
comparison procedures is that the variables follow a normal distribution. The t test, for 
example, does not provide accurate results if the variable from either sample does not 
follow a normal distribution. There are other tests, such as those designed to compare 
ranks or medians (for example, the Wilcoxon-Mann-Whitney test), which are appropriate 
for nonnormal variables.

There are many other types of comparisons that we might wish to make. Clearly, 
comparing two means does not exhaust our interest. Suppose we wish to compare three 
means, four means, or even ten means. We might, for instance, have samples of incomes 
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from adults in Salt Lake City, Utah; Seattle, Washington; Reno, Nevada; Portland, 
Oregon; and Boise, Idaho. We may use ANOVA procedures to compare means that 
are drawn from multiple samples. Using multiple comparison procedures, we may also 
determine whether one of the means is significantly different from one of the others. 
Books that describe ANOVA techniques provide an overview of these procedures. 
As we will learn in subsequent chapters, we may also use linear regression analysis to 
compute and compare means for different groups that are part of a larger sample.

Samples, Inferences, Significance Tests, and Confidence Intervals
The last substantive topic to cover in this chapter involves the core of inferential 
statistics: How do we know that what we found actually reflects what is occurring in 
the population? The cynical—but perhaps most honest—answer is that we never know 
whether what we found says anything accurate about the population. After all, statistics 
has been called the science of uncertainty for good reason. We can offer only degrees of 
confidence that our results reflect characteristics of the population. 

However, what do we mean by a population? Populations may be divided into target 
populations and study populations. Target populations are the group about which you 
wish to learn something. As this might include a group in the future (“I wish to know 
the risk of heart attacks at 60 years old among people who are now 40 years old”), we 
typically find a population that closely resembles the target population; we call this the 
study population. There are clearly many types of populations. For instance, we might 
be interested in the population of sea lions off the coast of San Diego in July 2005; the 
population of poodles in New York City; or the population of voters in Massachusetts 
during the 2014 election. Yet quite a few people, when they hear the term population 
used in statistics, assume it means the U.S. population, the world’s population, or some 
other extremely large group.

A sample is a set of items selected from the population. There are many books and 
articles on the various types of samples that one might draw from a population. The 
most commonly described in elementary statistics is the simple random sample. This 
means that each item in or member of the population has an equal chance of being in 
the sample. There are also clustered samples, stratified samples, and many other types. 
Most of the classic theoretical work that has gone into inferential statistics is based on 
the simple random sample, however.

It should be obvious by now that one of the valuable results of statistics is the ability 
to say something about a population from a sample, but recall the lesson we learned 
when discussing the standard error of the mean: We usually take only one sample from 
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a population, but we could conceivably draw many. Therefore, any sample statistic we 
compute or test we run must consider the uncertainty involved in sampling. The solution 
to this dilemma of uncertainty has been the frequent use of standard errors for test 
statistics, including the mean, the standard deviation, correlations, and medians. As we 
will see in chapter 2, there is also a standard error for slope coefficients in linear regression 
models.

These standard errors may be thought of as quantitative estimates of the uncertainty 
involved in test statistics. They typically are used in one of two ways. First, recall from 
elementary statistics that when we use a t test, we compare the t value to a table of 
p values. All else being equal, a larger t value equates to a smaller p value. This approach 
is known generally as significance testing because we wish to determine whether our re-
sults are significantly different from some other possible result. It is important to note, 
though, that the term significant does not mean important. Rather, it was originally 
used to mean that the results signified or showed something (see Salsburg, 2001). We 
often confuse or mislead when we claim that a significance test demonstrates that we 
have found something special.

Showing where p values come from is beyond the scope of this presentation. It is 
perhaps simpler to provide a general interpretation. Earlier we calculated a t test to 
compare the mean income levels in Salt Lake City (n = 50) and Seattle (n = 50). If we 
look up a table of t values (available online or in most introductory statistics textbooks), 
we find, using a sample size of 100, that a t value of 10.1 corresponds to a p value of less 
than .001. This leaves approximately .001 of the area under the curve that represents 
the t distribution. One way to interpret this p value is with the following long-winded 
statement: Assuming we took many, many samples from the population of adults in Salt 
Lake City and Seattle, and there was actually no difference in mean income from these 
populations, we would expect to find a difference of $2,500 or something larger (in Salt 
Lake City) only one time, on average, out of every 1,000 samples we drew. 

If you remember using null and alternative hypotheses, such a statement may sound 
familiar. In fact, we can translate the above inquiry into the following hypotheses:

H0:  Mean Income, Salt Lake City = Mean Income, Seattle
Ha:  Mean Income, Salt Lake City > Mean Income, Seattle

Astute readers may notice that we have set up a one-tailed significance test. This is im-
portant because one- and two-tailed significance tests imply different comparisons. A 
two-tailed significance test, for example, is a test of whether the mean is higher in Salt 
Lake City or in Seattle. We will return to the interpretation of p values in chapter 2.

The second way that standard errors are used is to compute confidence intervals 
(CIs). There are many applied statisticians who prefer CIs because they provide a range 
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of values within which some measure is likely to fall. Here, we contrast a point esti-
mate and an interval estimate. Means and correlations are examples of point estimates: 
They are single numbers computed from the sample that estimate population values. 
An interval estimate provides a range of values that (presumably) contains the actual 
population value. A CI offers a range of possible or plausible values. Those who prefer 
CIs argue that they provide a better representation of the uncertainty inherent in sta-
tistical analyses.

The general formula for a CI is:

Point estimate ± [(confidence level) × (standard error)]

The confidence level represents the percentage of the time, based on a z statistic or a 
t statistic, you wish to be able to say that the interval includes the point estimate. For 
example, assume we have collected data on violent crime rates from a representative 
sample of 100 cities in the United States. We wish to estimate a suitable range of values 
for the mean violent crime rate in the population. Our sample yields a mean of 104.9 
with a standard deviation of 23.1. The 95 percent CI is computed as:

= ± ×










=95% CI 104.9 1.96 23.1

100
{100.4, 109.4}

The value of 1.96 for the confidence level comes from a table of standard normal values, 
or z values. It corresponds to a p value of .05 (two-tailed test). The standard error for-
mula was presented earlier in this chapter. 

How do we interpret the interval of 100.4 – 109.4? There are two ways that are gen-
erally used:

1.	 Given a sample mean of 104.9, we are 95 percent confident that the population 
mean of violent crime rates falls in the interval of 100.4 and 109.4.

2.	 If we were to draw many samples from the population of cities in the United States, 
and we claimed that the population mean fell within the interval of 100.4 - 109.4, 
we would be accurate about 95 percent of the time.

In subsequent chapters, we will discuss how it is also possible to construct CIs for point 
estimates from a linear regression model.

An Example Using SPSS
The file GSS 2010.sav is an SPSS data set that contains many variables from the 2010 
edition of the General Social Survey. We are going to use SPSS to show some of the test 
statistics we have discussed in this chapter. Move the variable mntlhlth, which measures 
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Table 1.2:  SPSS Output

Descriptive Statistics

N
Statistic

Mean Std. 
Deviation 
Statistic

Variance 
StatisticStatistic Std. Error

Days of poor mental 
health past

1,151 3.83 .216 7.315 53.515

Valid N (listwise) 1,151

Figure 1.3:  Stata Output

Days of Poor Mental Health Past

1%
5%

10%
25%

50%

75%
90%
95%
99%

Percentiles
0 
0 
0 
0 

0 

       4 
15  

            25 
30 

Smallest
0
0
0
0

Largest
30
30
30
30

obs
Sum of Wgt.

Mean
Std. Dev.

Variance
Skewness
Kurtosis

1151
1151

53.51469
2.426593
8.238027

3.825369
7.315374

number of poor mental health days in the past 30 days, into the variable box. Click 
Options (bottom right corner) and place a check mark in the boxes labeled Mean, Std. 
deviation, Variance, and S.E. mean. Then click Continue. After it returns you to the 
Descriptive Statistics window, click OK. (If you wish to see how SPSS uses syntax files, 
try clicking Paste and it will bring up a new screen with the coding.) SPSS’s output 
screen is shown in Table 1.2.

An Example Using Stata
Using the same data in Stata format, GSS 2010.dta, we can run the same analyses as we 
did with SPSS. After opening the data set, use the summarize command with the detail 
option to see descriptive statistics of poor mental health days. The detail option allows 
you to see additional statistics, such as the median and variance. After entering the fol-
lowing text in Stata’s command line—summarize mntlhlth, detail—the output screen in 
Stata can be found in Figure 1.3.
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Key Terms
The following is a list of key terms and concepts in chapter 1. You can find definitions 
to these words throughout the chapter. 

•	 Categorical
•	 Causation
•	 Confidence intervals
•	 Constants
•	 Correlation
•	 Covary/correlate
•	 Descriptive
•	 Deviations from the mean
•	 Discrete
•	 E[X] = expected value of the 

variable X
•	 Frequentist
•	 Inferential
•	 Measures of central tendency
•	 Measures of dispersion
•	 Mean (arithmetic)
•	 Median
•	 Natural logarithm
•	 Normal/Gaussian distribution

•	 One-tailed significance test
•	 Population
•	 Probability
•	 Proportion
•	 Robust statistics
•	 Sample
•	 Sigma—summation
•	 Significance testing
•	 Simple random sample
•	 Standard deviation
•	 Sum of squares
•	 Trimmed mean
•	 t test
•	 Two-tailed significance test
•	 Variables
•	 Variance
•	 xi

•	 x-bar

Analysis Exercise
1.	 As an exercise, see whether you can compute the standard error of the 

mean from the mean and the standard deviation (abbreviated Std.) from the 
variance listed in the table. 

SPSS: Use Analyze-Correlate-Bivariate to estimate the correlation between 
educ and mntlhlth in the GSS 2010 data (make sure the Pearson box is 
checked). Can you figure out how to estimate the covariance between 
these two variables? (Hint: use Options on the Bivariate Correlations 
screen.) If you are interested in confidence intervals for the mean, try 
using Analyze-Descriptive Statistics-Explore and place Public Expendi-
tures in the Dependent List box. 
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Stata: Use the correlate or pwcorr command to estimate the correlation 
between educ and mntlhlth (for example, correlate educ mntl-

hlth). Can you figure out how to estimate the covariance between these 
two variables? If you are interested in confidence intervals for the mean, 
use the ci command. 

Solution 
You should find that the correlation is .748 and the covariance is 37.065. For public 
expenditures, you should obtain 95 percent CIs of 37.18 and 50.05. Using the GSS 2010 
data, look for statistically significant differences by gender in personal income with a 
t test. 

SPSS: Go to Analyze  Compare Means  Independent Samples T-test to run the 
analysis. Use p income as your test variable and gender (1 = male and 0 = female) as 
your grouping variable. What does this table show? What is the t value? What is the 
p value? 
Stata: In the GSS 2010 data file, you will find a variable called gender, which is coded 
as 0 = male and 1 = female (use the command codebook gender to see some in-
formation about this variable). We will use it to compare personal income (labeled 
pincome) for males and females. The command t test pincome, by(gender) 
should produce a table with which to accomplish this task. What does this table 
show? What is the t value? What is the p value? Unlike SPSS, you can try using the 
subcommand welch to request Welch’s version of the t test for unequal variances 
(t test pincome, by(gender) welch). What does this test show?




